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UNSTABLE WAVES OF JET FLOWS WITH
DENSITY INHOMOGENEATY

INTRODUCTION

\ The problem to be considered concerns linear unstable waves of axisymmetric jet
flows in the presence of density inhomogeneities. Such flow phenomena occur when a jet
is discharged into a stratified medium, e.g., pollutants and industrial waste discharged
into the environment, cooling water discharged from power plants into rivers and lakes.
and flow patterns generated by vehicles moving in the ocean. Investigating the instability
characteristics of such jet flows is necessary to fully understand the overall behavior of the
flow patterns and their corresponding effects on the environment. Changing the instability
characteristics of the flow can mean controlling the flow patterns, for example, produced by
vehicles moving in the ocean. As in the case of two-dimensional shear flows. axisymmetric
jet flows may possess amplified waves due to the Kelvin-Helmholtz mechanism except that
the formulation for jet flows is complicated by the absence of the Squire transformation
and the consideration of cylindrical geometry. lr L &-, f/s 91) /r' 'o,, '

In a well-known paper concerning unbounded parallel flows of the jet-wake type.
Batchelor & Gill (1962) presented a general mathematical analysis of the stability charac-
teristics of axisymmetric flows of homogeneous fluids. A necessary condition for instability
and a semi-circle theorem for possible unstable waves were derived. By discussing the
governing equation near the jet axis, they were able to reach some general conclusions
on the characteristic difference between the axisymmetric and nonaxisvmmetric modes.
Meanwhile Reynolds (1962) conducted an experimental study and observed axisvmmetric
condensations and puffs in a water tank. The axisymmetric mode of a jet column was also
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examined by Gill (1962) with a slightly viscous jet flow model and later by Mattingly &
Chang (1974) with a coordinated theoretical and experimental investigation. The latter
found that the dominant disturbance in the jet was an axisymmetric one. It is expected
that initial disturbances will follow the direction of mean flows and the axisymmetric waves
will in general first amplify for the onset of instability.

In this theoretical study, the effect of radial density variations on the stability of
incompressible axisymmetric jet flows will be investigated. Both the necessary condition
for instability and the semi-circle bound on amplified waves will be obtained through a
unified integral representation. The results obtained here show that the necessary condition
for the existence of amplified waves depends not only on the velocity profile, but also on
the effect of density inhomogeneities. Both positive and negative density gradients have
stabilizing effects. The semi-circle theorem for unstable waves can be extended to flows
with radius-dependent density. For top-hat profiles of jet or wake type, the semi-circle
bound is found to be the best possible.

GOVERNING EQUATIONS AND INSTABILITY CHARACTERISTICS

The jet flow to be considered consists of a radius-dependent axial velocity W(r) in a
fluid with density p(r), and is confined within the annular region between two concentric
cylinders located at r = R, and r = R 2. Neglecting the gravitational effects, one finds.
within the framework of the normal mode analysis, that sinusoidal waves are governed by
the two ordinary differential equations

rn2(k2 + -- )p = ipk[DW - (W - c)(Du + (1)

2r

Dp = -ipk(W - c)u (2)

with D = d/dr.

Here u and p are the perturbations in radial velocity and pressure respectively. To
consider only temporal instabilities, the azimuthal wave number m is an integer, the axial
wave number k is real, while the phase velocity c = cr + ici is in general complex. Since
the equations are invariant under complex conjugation. a non-zero c, implies instability.

Combining equations (1) and (2) and eliminating the variable 1). one finds a single
differential equation governing instability as follows:

(W - c) D{pq(Du + )]-pu - D.(pqDW)u =0 :3)

where D. = D - 1/r and q = r"/(m2 + k2r 2 ). Equation (3) and boundary rondiriofns
u(RI) = u(R 2 ) = 0 represent an eigenvalue problem for the inviscid unstable waves f
axisymmetric jet flows in a stratified medium. Reminiscent of the Rayleigh equation
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encountered in the stability of two-dimensional shear flow, equation (3) possesses a first-
order singularity for neutral disturbances and analytical solutions in terms of well-known
functions are in general not possible except for some special flow profiles. We will emphasize
the effect of density inhomogeneities and seek solutions to those flow profiles which admit
exact solutions in terms of modified Bessel Functions. To do this, one must avoid the first
order singularity in the equation as ci vanishes.

Before obtaining exact solutions to equation (3) we will briefly re-examine the inviscid
instability characteristics of the flow via an integral representation. The analysis in the
present case is particularly simple and the principal steps of deriving these characteristics
are reproduced here for the sake of completeness. To perform the analysis, we look for
unstable waves with ci > 0 and make the transformation u = (W - c)n 0. Here n is an
arbitrary real constant. Multiplying the resultant equation by the complex conjugate r3,
integrating it over the flow domain, and applying the boundary conditions that 0 vanishes
at the solid boundaries of the inner and outer cylinders, one obtains

JR3 (W - c)2np[q[D°012 + IVk121 - (W - c)2n- [(n - 1)D(pQ)JIr1,I 2

-(W - c)2 "- 2 [n(n - 1)pq(DW)2]11p1 }rdr = 0 (4)

where Q =rDW/(m2 + k2 r2) and D = D + 1/r. Letting n = 0 one finds. from the
imaginary part of the resultant integral

ci D(pQ) I'vkI
J R1  . 1 ,) : 2 d r= 0 (5 )

For instability, the expression D(pQ) must vanish at least at one interior point within the
flow domain, i.e.,

_Q + P = 0 (6)
Q p

The first term of the above equation is reminiscent of the inflexion point theory encoun-
tered in plane parallel flows, and has been discussed in detail in the study of homogeneous
jet flows (Batchelor & Gill 1962). The second term depends solely on density inhomo-
geneities and will have significant contributions when the condition for instability of the
otherwise homogeneous flow field is satisfied. It is shown from equation (6) and later via
the exact solution for a special flow profile, that the necessary condition for amplified waves
established for homogeneous fluids is not sufficient if density inhomogeneities are present.
Cylindrical vortex sheets can be stable if large density gradients are present in the flow.

The refinement of condition (6) can be obtained by equation (5) and the real par, of
equation (4) for n = 0. One can easily show a strong necessary condition for instability is

prDW ](W VVW.) 0

m2 + k2r2(
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where W, is the mean velocity evaluated at a certain point inside the flow field where
condition (6) is satisfied.

The semi-circle bound can easily be derived by combining the real and imaginary parts
of integral (4) for n = 1. Imposing the upper and lower limits a and b for the mean axial
velocity, one obtains

0 (W - a)(W - b)pgqiD*VI 2 + IiI]rdr

[c, - !(a + 6)f + c, - [(a _ b)]2 p(qJD41 2 + 10kf]rdr (8a)
2 c.- +bJ 2 1 4JR

(c - + b)12 + C; [(a - b)]2  (8b)

Thus the semi-circle theorem is valid in the presence of density inhomogeneities, saying
that the complex wave velocity must lie inside a semi-circle with the diameter equal to
the range of the velocity. The subsequent section will show that this semi-circle bound
provides an exact solution for some particular flow profiles.

TWO EXACT SOLUTIONS AND THEIR SEMI-CIRCLE BOUNDS

To examine the validity of the earlier obtained instability characteristics and to gain
some information on instability growth rates as a function of velocity, density and wave
numbers, one must seek explicit solutions to equation (3) for some special flow configu-
rations. We will consider those profiles for which solutions in terms of modified Bessel
functions are possible. One of such profiles to investigate is

W= Wi, P=pi(I)" for R, 1 _r < R

W =W 2 , P=P2(r)1 '
2 for R<r<R2  (O)

where Wi, W2 ,Pp 2,o'i and OY2 are constants. This flow represents a top-hat jet core with
radius-dependent density surrounded by a fluid column with different density. Because the
discontinuity in the velocity at the interface r = R satisfies instability condition (6) for
homogeneous fluids, this velocity profile will generally be unstable for all modes in uniform
media via the Kelvin-Helmholtz mechanism. However, it will be demonstrated later that
these unstable waves can be stabilized if large density gradients are considered.

The perturbations in radial velocity and pressure for the flow profile in equation 9
are given by

a I krl' (kr) r0 krK ', (kr)
U, r2+ (kr) B- + 1K,; kr

2 _,_(kr) 2 ,,kr)
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pj = -ipjR-jk(W j-c)r+ {AjI,(kr)+BK,(kr)} (10)

with vis- V=m2 + (aj/ 2 )2 for j = 1,2. Here Ii., (kr) and K,', (kr) are the modified Bessel

functions of the first and second kind of order v), and a prime denotes the total derivative

with respect to the quantity shown.

By integrating equations (1) and (2) across the interface at r = R, both the kinematical

and dynamical interfacial conditions are obtained as follows:

<w >=0. W-C

<p>O(11)

where• < 0 >= O(R+0) - (R-0).

Making use of the boundary conditions at r = RI, R 2 and applying the matching conditions

(11) yield the secular relation for instability

(Wi - c)[I.,(ic) - HK.,(sc)]L+ H, + - "I"-"IK,(n
2 ,,,(€ 2 K,(,x)

- (W 2 - c)[K.,() - H 2 1,(c)] = 0 (12)

2 +(..K ,) V ,
+ ]A-12(') - H2[L +2 K,, (x) 2 ,(tc)

Here

0'1 +_____t[a + i I,( . ,K

2 K,,, (tc I)

2 'cK, (c 2 )

H2 --

where a p,/pl, Pc kR, r. - kRj, and 2 = kR.2. The expression H, vanishes as R- 0

and so does H2 as R -- oo to represent solutions for unbounded flows. Solving equation

(12) for the wave velocity yields

Et W, - oE-2,IV2 = (TV, - W ,)(~ EE2z),

E, - aE 2
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Here
=- [I.I(K) - lK,[(,)1

I= [K,() - (

a2 +cK' (K) [2 + y (

K, K(r) ]K 2 ( ~ 2 + .1 (#)

It can be shown that E1 > 0 and E2 < 0 for all the values of 1 - IC 5#2. Nonzero c,
is therefore expected for all modes except for very small or large density ratios. A liquid
jet impinging into the atmosphere is of course stable for all modes even in the presence
of the strong Kelvin-Helmholtz effects arising from the cylindrical vortex sheets. This
stabilization phenomenon stems from the fact that instability condition (6) is violated by
large density gradients even though DQ vanishes inside the flow field. One other interesting
feature we like to point out is that all amplified waves marked by equation (13), in spite of
the density variations, wave numbers and locations of the solid boundaries, lie exactly on
the boundary described by equation (8b) with the stable solutions corresponding to a = 0
and a = oo at both ends of the semi-circle. This exactness may be explained by examining
integral (8a) for the flow under consideration. The velocity profile for the two-region flow
can be written as

W = Wi + (W 2 - W)H(r-R) for R 1 < r < R 2  (14)

where H(r-R) is the Heaviside function. The equality of equation (8b) is obtained through
the substitution of equation (14) for W in integral (8a). Note that the instability growth
rate for fixed k first increases with increasing a, reaches a maximum at an intermediate
value and then decreases with still larger a, with the maximum growth rate (IW 2 - Wi j/2)
governed by

I, 1 (K) - H 1 K, 1 (K:)
0 K-~ (I')ll (K,) H,- K.,'(r.+

+ I ,H, +2 K+, ()[2 + ,,K,,( "

+a K.2(r) - H1.,(K) =0 (15)
+ AT~2 (K)]K() - + (K)

The special case of a, = a2 = 0 in equation (15) for unbounded flows is plotted in figure
(1) which shows the characteristic difference between the axisymmetric mode and the

asymmetric ones.

The second example whose instability characteristics we wish to study for axisymmet-
ric perturbations is a three-region flow with the profile given as:
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W W1 P=Pi O< r<R

w p= ,-  .2-a + - RP =P2(j- R, <r < R 2  (16)
R2 - RI -RI

W W 2  p--p R 2  r <o

Here PI, P2, P3 and a are arbitrary constants. This profile can be used to model a jet
exhausting into an environment of different density and velocity with the middle region
representing the shear layer to allow transitions of the physical quantities of the jet to
its surroundings. One can examine such flow instabilities by adjusting the parameters
Wi, Ri, pi and a. The perturbation radial velocities and pressures for the flow in the inner
and outer regions can be reduced from equation (10) by setting m = 0 and a, = 0. while
the solutions in the middle region are given by

U2 = r-*'[AI0(kr) + BKCkr)]

P2~~ =i2_)2('-Is) r;-2 1if 2p.(W 2 - W) r2 h[.44 (kr)+ K(k)

ip2 ( A- +....k)
W,+ -- I~t  

W2-
2  -- ,u" lkr) l!,k)Bp kr,,k1_]IA

A krA(kr) kr ',(kr)-2" - R2f w#+ -+ ](kr)+B[+

(17)

where A = 1 - a/2. Applying the matching conditions (11) at both interfaces r = R, and
r = R 2 gives the secular relation

(F1(WI - c) + 2g62 "(W 2 -W)]( ) G(W -C) + 2[G(2 M-) 2 - W )K(

1 - 62" 1 -62,u
=0

___ ._____ 2.i(flI. - T1V1
F2(W 2 C)+ -u(W -TV,)14(r 2 ) [G2 (W 2 - c) + )-

62A,62

where

F, =-+ K II(K)

F Ko(P-2() K2 (K.2F2 = -/+___-
C12I%(K) 4,,,(K2 )

G 0 = -/

G, / + K2Ao(K.) I cK.( ,(K2)
G2 -AA +

210K(K.2) KI(,(.,.)

R, R2 1  P2
6=- f. (, 1 )17. C,--.

I~ R2  P3

7



MINI| U U El LEE II, i

Rearranging determinant (18) by using the identity

l • 1
I.(z)K,(z) - Iu(z)K(z) =;-

z

one finds the solution for the wave velocity

W1 + W2 +(W 2 - WI) (F + G2 62 )I&(#C)Ki(r-2) - (GI + F6b5')K,(rc)I(K2 )
2 + - 65 "  F1G 2I,(,C1)K.(,-2 ) - GlF2K.(,cl)r.(,C2)

(19a)
= (w - W 1)

c1 = 1 62M FG 2 Io(,Cl)KO(C2) - GiF2 K,,(i)I,,(I 2 ) (19,)

and

A = 462; [(?1 1b p + 1.rlK(F2)FA +2 )K.(2 I

( 1 - 5 1 621& (1c2 e 1 F 2 pG )G 1 F2K .(t,)I(#2) 2(19c)
2A + 2 - -~

Thus amplified waves exist whenever A > 0. equations(19) for the particular case W =
0, Pi = p2 = p3 and a = 0 reduce to the result investigated earlier by Michalke & Schade
(1963) in their study of shear flow instability in uniform fluids except that $4 should be
dropped from their equations (91) and (94). It should be pointed out that the complex
wave speed in their limiting case as R, approaches R2 appears to be incorrect. The solution
for unbounded cylindrical vortex sheets should have been recovered if the proper limiting
process had been taken. The flow in that limiting case was certainly unstable for all axial
wave numbers with the real wave velocity approaching the velocity of the center of the jet
as k -+ 0. The limiting process as R, R 2 reduces equations(19) to

W 1 + W 2  (W, - W2 ) [Io(Pc)K1 (r) - aKo()II(n)] (20a)
c- 2 + 2 [o()K,(,.) + aKo(r,)I(r,)]

c, = =(WI - W2) -/aIo(l)Ko(c)I(tc)K1 (K) (20b)
Io(,.)K,(,c) + aKo(,.)Ii(,c)

with a representing the density ratio between the outer and inner regions. equations (20)
can of course be reduced from equation (13) for the special case of al = a2 = 0 and m = 0
for unbounded axisymmetric waves. It in fact can be shown that the general expression
(19a) for c, possesses a limiting value W for long axial wave lengths. This acts as a
support to Batchelor & Gill's finding that long waves with axisymmetry travel with the
speed of the center of the jet. The corresponding instability discriminant reduced from
(19c) takes the form

A 2 [al(1 - 62 ) + (1- 62 )2],Iogr2 > 0 (21)
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Thus long waves are always unstable except for k = 0. For sufficiently large wave numbers,
the asymptotic form of the modified Bessel functions reduces equation (19c) to

G F2 + 2iu(Gi - F262 ,) 1 2
I - 82A 1 < 0 (22)

Therefore amplified waves cannot exist in their short wavelength range except for the
limiting case R, = R 2 in which the maximum growth rates for uniform fluids occurs in
the limit k - oo. These instability behaviors are plotted out in Figs. (2) and (3) for the
special case of a, - a3 = a = 1 and W2 = 0, with e = R2 - R1 representing the shear layer
thickness. Both the velocity and density in this case vary linearly across the shear layer.
Figure (2) shows the instability growth rates in comparison with the eigenvalue bound in
their complex velocity domain. The amplified rate for fixed shear layer thickness e first
increases with increasing k, reaches a maximum value at an intermediate value of wave
number, and decreases to zero at the relatively large value of k given by equation (19c)
when the discriminant vanishes. These instability growth rates approach the semi-circle
bound as the shear layer thickness diminishes and the maximum growth rate IW2 - W1 1/2
for cylindrical vortex sheets is reached when e = 0. Note that the complex wave velocity
expands to the left portion inside the semi-ci It as the density ratio between the jet
core and the surroundings decreases. For suficiently small or large density ratios, the
flow is stable against all disturbances. The neutral stability boundary and the maximum
growth rates are shown in Figure (3) as a function of the wave number and the shear layer
thickness. The figure suggests that, for non-zero shear layer thickness, disturbances for
which e > 2/k are stable, and the maximum growth rate occurs when ke is of the order of
one-tenth. It is also shown through this particular flow configuration that amplified waves
with axisymmetry may exist for some slowly varying profiles in the long axial wavelength
range.

CONCLUDING REMARKS

The instability chaxacteristics of axisymmetric jet flows in inhomogeneous fluids were
discussed. The exact solutions to the governing stability equation confirm these char-
acteristics; in particular, the semi-circle theorem provides the best possible bound on all
amplified waves of the top-hat type velocity profiles. The discharge of a jet into a stratified
medium may produce some organized flow patterns which do not exist in a homogeneous
environment. An understanding of the instability characteristics is of practical interest.
because changing those characteristics of the flow can mean controlling the flow patterns.
for example, produced by vehicles moving in the ocean.
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NOMENCLATURE

c - cr + ici = complex phase velocity

D = d/dr

I = Modified Bessel Function of the first kind of order v

k = axial wave number

K. = Modified Bessel Function of the second kind of order v

m = azimuthal wave number

p = pressure perturbation

r = radius

R = position of the interface

RI, R2 = positions of solid boundaries

u = velocity perturbation in the radial direction

W = axial velocity

C = kR

le , I = kRi,kR 2

0 = transformation of u

p = density

a, 0I, a2 = parameters for density variations
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